The cholesterol dogma

We have seen how fats are essential for life and how they are important to lower cholesterol. In this sense, it is the omega 3’s and omega 6’s essential fatty acids (EFA’s) that can lower cholesterol. Tropical oils and oils like EPA and DHA fish oils can also lower cholesterol. Others like oleic acid may not lower cholesterol, but do not raise it either.

Cholesterol is such a misunderstood topic that it would be worth going into detail about what it is, how it is used in the body and why it is important, as well as when it can become a problem. This is the topic of this blog.

According to the author of the book ‘Fats that heal, fats that kill’ Udo Erasmus, the ‘cholesterol scare’  is “Big business for doctors, laboratories, and drug companies. It is also a powerful marketing gimmick for vegetable oil and margarine manufacturers who can advertise their products as cholesterol free.’ According to him,  “999 out of every 1000, depending on the expert source you read, can control their cholesterol levels and more importantly their cardiovascular health by nutritional means alone.”

So what is cholesterol?

Cholesterol is a hard waxy lipid that melts at 300 F. It is unique in the body because, as opposed to other substances, once it is made, it cannot be broken down and must be removed through stool (in the form of bile acids and cholesterol molecules). Fiber helps with this removal because it helps the movement of cholesterol through our intestines. However, if fiber is missing , cholesterol and bile acids are reabsorbed and this increases our blood cholesterol levels.

Our cells make their own cholesterol according to their need. The extra cholesterol is ‘hooked up’ to an essential fatty acid  and shipped via our blood stream to our liver to be changed into bile acids, (as long as vitamin C and certain minerals necessary for this change are present). Our liver then ‘dumps’ bile acids into our intestine to help with fat digestion and removes the bile acids from our body with solid wastes with the help of  fiber. This prevents cholesterol and bile acids in our intestines from being reabsorbed and recycled.

Cholesterol does not need to be obtained from foods because our body can make it from simpler substances: from the breakdown of sugars, fats and proteins, specially when we eat them in excess. The more calories we consume, specially from sugars, saturated and other non-essential fatty acids, the more pressure there is  in our body to make cholesterol. In addition, the more stress we are under, the more cholesterol our body makes, because cholesterol is the precursor of stress hormones.

Main functions of Cholesterol

Cholesterol is essential for health. The many functions cholesterol plays in the body are proof of this. These vital functions are:

  1. Cholesterol is found in our cells’ membranes. Each cell membrane is equipped with the means to synthesize its own cholesterol. In the cell membrane, cholesterol has the important job of fine tuning the membrane fluidity, which constantly fluctuates  under conditions of fat intake or fat deficiency. The more essential fatty acids (EFA’s) we ingest (which are fluid) the more cholesterol  (which is rigid) will be built into membranes. This is one reason why EFA’s lower cholesterol levels. A diet rich in saturated fatty acids (SaFas), which are hard, means more cholesterol will be removed from membranes and moved back into the blood, this is why saturated fatty acids raise cholesterol levels.  Our intake of fatty acids then is essential in this regard.
  2. From cholesterol our body makes steroid hormones (also known as sex hormones): estrogen, progesterone and testosterone.
  3. Similarly, our body makes adrenal corticosteroid hormones from cholesterol: aldosterone (which regulates blood pressure) and cortisone, which promotes the synthesis of glucose to prepare our body for the fight or flight stress responses we deal with everyday. Cortisone also suppresses inflammation.
  4. From cholesterol our body makes vitamin D, that regulates calcium and phosphorus metabolism.
  5. Cholesterol is used to make bile acids, which are vital for digestion of fats and fat soluble vitamins from foods.
  6. Cholesterol is secreted by glands in our skin to protect our skin against dehydration, wind, sun and water. Cholesterol helps heal the skin and prevents infections by foreign organisms.
  7. Our liver, intestine, adrenal glands and sex glands all make cholesterol for the other functions in which cholesterol is involved.
  8. During pregnancy, the placenta also makes cholesterol from which it manufactures progesterone, which keeps pregnancy from being terminated.

Cholesterol in transport

For transport in our blood, cholesterol must be hooked to a fatty acid, preferably an essential fatty acid (EFA) and vitamin B 6. The 1/2 oz of cholesterol in our blood stream is found, together with triglycerides, phospholipids, carotene, vitamin E and proteins in carrier vehicles called plasma lipoproteins. There are two main groups of lipoproteins:

  1. Made up of two subfractions, the most important of which is LDL (‘bad’ cholesterol), it carries cholesterol and fats (triglycerides) from foods and our liver to our cells.
  2. The other fraction, called HDL (‘good’ cholesterol), carries cholesterol from cells back to our liver where it is changed back to bile. Both cholesterol and bile acids are excreted into our intestine, and eventually discarded with our stool.

Total blood cholesterol is all cholesterol in transit, being carried by the different lipoprotein vehicles to and from our cells.

Digestion of fats, oils and cholesterol.

Our body’s processing of fats and oils starts with digestion.

The liver is the organ that digests the fats and oils we eat. Poor digestion of fats/oils will show as a feeling of being tired and nauseous, which are signs of liver dysfunction. Digestion of fats is so essential for health that any problem with it will start the disease process.

In our mouth there is not much digestion of fats, except for mixing. In our stomach there is an enzyme that can split fats into their components, but this enzyme is inactive under normal stomach acid conditions. Our small intestine can digest a maximum of 10 grams every hour. The digestion process takes part in different stages. All of them have to be working in pristine condition for fat digestion to take place effectively. Digestive problems are a hidden epidemic and they should be addressed first before other health conditions can be resolved. The different stages that take place in digestion are as follows:

  1. Bile. The churning action of our intestines mixes fats with bile that our liver produced from cholesterol and stored in our gallbladder. Bile contains lecithin, which emulsifies fats, breaking it into tiny droplets. This increases the surface area of fat exposed to fat digesting enzymes and speeds up digestion of fats.
  2. Enzymes. Fat digesting enzymes are made by our pancreas and released into food mixture in the first part of our small intestine (duodenum). Digestion and absorption of fats continues to take place as food passes through our small intestine. Different enzymes in the alkaline pancreatic juice digest triglycerides, phospholipids and cholesterol present in food fats. These enzymes split fatty acids and the different components are absorbed separately into the cells lining our intestinal tract (mucosal cells) where they are put back together. By taking them apart first, our body makes sure that the complex chemical substances (proteins) that make up the tissue of the food we eat don’t get in our blood. If this happened an immune reaction would occur, where white blood cells, the soldiers of our immune system, would mobilize to the area to declare war and destroy these intruders. This is known as ‘food allergy‘ which is very stressful and costly to our body.
  3. Transport. Our mucosal cells build transport vehicles for fats out of proteins and phospholipids. These loaded bags are then dumped into our lymph vessels which ship them to a large vessel close to our heart where they merge with the bloodstream. The heart then pumps them to the rest of the body. These loaded bags never reach our cells, instead the body uses high-density lipoproteins (HDL) to take these fats to our liver, which makes another transport vehicle called very low-density lipoproteins (VLDL) which are transformed into LDL (low density lipoprotein). Our blood carries both VLDL and LDL, which in turn, transport the fats and cholesterol to our cells. What is more, each of our 100 trillion cells have on their membranes several ‘docks’ for receiving and unloading VLDL and LDL. When their requirement is filled, these docks shut down, and the extra fat and cholesterol continue to circulate in our blood (high blood triglyceride and cholesterol levels) until they are metabolized by our liver or stored as fat. Standard medical dogma considers HDL ‘good’ and LDL ‘bad’ but actually both are good for cardiovascular health.

This complex lipoprotein system ensures fats are digested, absorbed and transported to all cells to supply cells with the fats they need. It also ensures excess fats don’t build up in our blood. This system also moves excess cholesterol from our cells to the liver which converts cholesterol into bile salts, pours these salts into our intestine to aid in fat digestion, then gets rid of excess cholesterol in our stool with the help of fiber. Lipoproteins work efficiently when we eat fats as nature makes them, when we ingest rancid oils our body partially protects us by unpalatability, irritation of the delicate lining of our intestines, diarrhea and decreased digestion and absorption.

Lecithin and cholesterol

Lecithin is also important when it comes to cholesterol. The word ‘lecithin’ is derived from the Greek word for ‘egg yolk’ from which it was first isolated. Lecithin is considered to be our ‘edible soap’ because it breaks up fats into smaller droplets, this action is known as emulsification. Lecithin is important because it helps our digestion of fats and improve general health. All unrefined crude oils contain some lecithin, the richest source is unrefined soybean oil, which contains both essential fatty acids. Lecithin from other seeds only contains one of them:  linoleic acid (LA) found in safflower, sunflower, hemp, walnut, pumpkin, sesame, flax, corn and sesame. Lecithin is removed from oils when they are refined.

Lecithin has very important roles for heart health and general health:

  1. It keeps cholesterol soluble.
  2. It keeps cholesterol isolated from arterial linings.
  3. It protects cholesterol from oxidation.
  4. Helps prevent and dissolve gall and kidney stones by its emulsifying action on fats.
  5. Lecithin is also important for our livers’ detoxification functions, and helps us from slowly being poisoned  by breakdown products of metabolic processes that take place in our body.
  6. Lecithin increases resistance to disease by its role in our thymus gland.
  7. Lecithin is also important because it makes 22% of both the high density (HDL) and low density lipoprotein (LDL), both of which are cholesterol carrying vehicles in our blood. These vehicles keep cholesterol and triglyceride fats in solution in our bloodstream and carry them to and from all parts of our body.
  8. Lecithin is important component of bile, helping break down fats into smaller droplets, increasing their surface area and thus improving their digestion by enzymes.
  9. Finally, lecithin is also an essential nutrient.

The dark side of cholesterol

According to the author, cholesterol has been given so much attention by the medical community that it has been wrongly associated with cardiovascular disease. The reason is that it is found deposited along with fats, protein, fibrin, and calcium in the inner lining of our arteries, where it narrows them.

When cholesterol becomes a problem. Atherosclerosis.

Around 2/3 of the population of North America, Europe and the rest of the world suffer from arteriosclerotic deposits to some degree. These deposits are made of proteins, cholesterol, fats and minerals, they narrow arteries and slow down blood flow. What is more, cholesterol and saturated or processed fatty acids make our platelets sticky increasing the risk of clots. The combination of atherosclerosis and clots may completely block an artery, cutting off oxygen and nutrients to the cells of the part of our body supplied by that artery. These cells then die. If an artery to our brain is blocked a stroke occurs and depending on the size and location of the blocked artery the stroke may be minimal or fatal. Narrowed arteries to the heart produce chest pains on exertion (angina) or after a meal high in fats that makes blood thicker and less capable of supplying oxygen. Blockage of an artery supplying our heart results in a heart attack (coronary occlusion). If a clot blocks an artery in our lungs, pulmonary embolism occurs. A blocked artery to our legs results in impaired circulation that can lead to gangrene. Atherosclerotic deposits also harden our arteries resulting in raised blood pressure because our arteries’ resilience which normally takes up the pressure generated by each heartbeat (contraction) is lost. This results in a heavier load on our heart and kidneys which, when prolonged leads to water retention (edema) and heart and kidney failure.

Controversy about cholesterol

The topic of cholesterol has received a lot of controversy, with many different interpretations about its cause. For 40 years, elevated cholesterol levels have been blamed for fatal diseases of our heart and arteries which include heart attacks, pulmonary and other embolisms, peripheral arterial disease, stroke, high blood pressure, heart failure, and kidney failure. According to the cholesterol theory, high total cholesterol and high low density lipoprotein (LDL) levels predispose us to cardiovascular diseases (CVD). For the author Udo Erasmus, the cholesterol theory has many flaws and he explains his point in the following way: CVD was rare before 1900. Then, during the first and second world wars, when less animal products and more vegetables were eaten the CVD death rate fell dramatically. According to this evidence it looks like high cholesterol levels predispose us to CVD and low cholesterol protects us. However, cholesterol consumption has remained the same since 1900, while cardiovascular disease increased greatly between then and now. During the two world wars, people ate more vegetables, less margarine and shortening and although fat and cholesterol consumption was lower, the consumption of minerals, vitamins, essential fatty acids and fiber were higher. Protein and sugar consumption were also lower during these wars. All of these factors, not cholesterol alone, have to be considered as possible reasons for the decrease in cardiovascular diseases and others degenerative diseases during those two wars. Stress too was higher back then, resulting in increased cholesterol production which if the cholesterol theory was correct, it should have increased incidence of CVD. He points to other evidence that seems to counteract the cholesterol theory. One is food traditions like that of the Inuit, who eat a traditional diet high in meat, fats, and cholesterol and have little atherosclerosis, cancer, diabetes, arthritis, and other degenerative diseases. Similarly, he refers to the work of the dentist Weston Price, who travelled around the globe in the 1930’s studying different cultures. He discovered that all traditional diets maintained the health of the local people, but within a single generation of introducing white sugar and white flour, physical degeneration skyrocketed.

More theories about cholesterol

With so many people having cholesterol-containing deposits in their arteries several explanations for how this is the case have emerged. A group of researchers think that the body cannot metabolize large amounts of dietary cholesterol effectively. Others think that a diet high in meats which contain too little cholesterol-removing-fiber is to blame. Still others believe that it is a diet low in micronutrients needed to properly metabolize cholesterol that is the cause. In this sense, research has shown that diets high in cholesterol which also include sufficient quantities of all vitamins and mineral micronutrients keep blood cholesterol levels normal and prevent atherosclerosis. Clinical evidence shows that atherosclerosis can be lowered by exercise, diet and micronutrient supplementation like vitamin C and B 3. Calcium, zinc, copper and chromium can also be helpful.

Other theories to explain the cause of CVD have gathered momentum and followers, these are:

  1. The triglycerides and sugar theory. This theory points to the fact that triglyceride levels increase with high intake of refined sugars, starches, excess calories and hard non-essential fats. Increased use of these in our diets parallels the increase in CVD since 1900, while intake of cholesterol has remained constant. Certain toxins and drugs also increase triglycerides levels, which also will increase cardiovascular risk.
  2. Sugar. British researcher John Yudkin blames sugar for the meteoric rise in cardiovascular disease. Sugar consumption is one of the quickest ways to increase triglycerides, because our body turns sugar into fats to protect itself from the toxic effects of excess sugar. Sugar also increases oxidation damage, inhibits immune functions and interferes with the transport of vitamin C. All of these actions of sugar can affect the development of cardiovascular and other degenerative diseases. Decreased consumption of refined sugars and non-essential fatty acids prevents and helps reverse CVD and other degenerative diseases. It also increases vigor and longevity.
  3. Oxidation theory. Recent discoveries show that oxidized cholesterol and oxidized fatty acids  in triglycerides damage arterial walls leading to CVD. When antioxidants,  which prevent this oxidation from happening,  are lacking in foods then lipids and cholesterol are attacked by oxygen. According to this interpretation, increasing the intake of antioxidants like vitamin C, E, selenium, sulphur and limiting the intake of sugar, which interferes with the transfer of vitamin C, can help.
  4. Deficiency theory. It suggests that deficiencies of vitamins, minerals including antioxidants, fiber and EFA’s are the key causes of degenerative diseases.
  5. The vitamin C interpretation. The research of Linus Pauling  and Matthias Rath points to the lack of anti-oxidants and how this leads to poor control of the free radicals normally produced by oxidation. These free radicals speed oxidation of cholesterol and triglycerides, which can damage arteries. Their work concentrated in what they considered to be the most potent of antioxidants, vitamin C. Vitamin C is used by the body for the production of collagen and elastin to keep our arteries, bones, teeth, cartilage, scar tissue and other tissues strong. Lack of vitamin C results in weakened arteries that bleed into tissue spaces. Under conditions of weak connective tissues, our body tries to compensate for this deficiency by thickening our arteries using an adhesive repair protein called apo made by our liver. This repair protein is a stronger risk factor for cardiovascular disease than LDL according to these researchers. In cholesterol studies and measurements, the effect of this protein and its carrier vehicle Lipoprotein (a) have been mistakenly blamed on LDL. When vitamin C consumption goes up, apo (a) levels decrease because less repair protein is necessary when there is enough vitamin C to keep connective tissue in our arteries strong. Since humans don’t make vitamin C, the only way to prevent this from happening is to supplement with vitamin C. We need high doses of it, from 5 grams upwards.  Vitamin C alone cannot be used to prevent cardiovascular disease, sulphur containing amino acids, vitamin B3, Co Q 10 are also needed.

The combination of thickened (narrowed) arteries and sticky platelets sets the stage for heart attacks, strokes and emboli. In this sense, it is the saturated fatty acids that tend to make platelets more sticky when our diet is high on foods like beef, mutton, pork, dairy products, etc and low in the more fluid (less sticky) essential fatty acids. The problem with these saturated fatty acids is that they can be deposited within cells, organs and arteries along with proteins, minerals and cholesterol. A diet high in refined sugars has the same effects as these kind of fats because excess sugar is converted into these saturated fatty acids in the body.

Cholesterol in the 1900’s

According to the author, cholesterol cannot be the primary cause of CVD because our cholesterol consumption has remained about the same in the last 100 years, while CVD has skyrocketed. According to him, trans fatty acids and altered vegetable fats, sugars, processed foods lacking vitamins and minerals all deserve suspicion. Butter is not to blame for our increased fatty degeneration because our consumption of butter since 1910 has decreased while that of margarine rose by 9 times. In the same way, consumption of saturated acids, cheese, ice cream, frozen deserts and low fat milk all increased. Of special interest is the higher consumption of sugar, from 15 pounds in 1815 per person to 135 lbs today. At the same time our consumption of fiber decreased and refined flours increased.

How cholesterol is measured

For the last 30 years doctors have measured our blood cholesterol levels as predictors of cardiovascular risk but the author believes this is more for business than prediction.

The most common way doctors use to measure total serum cholesterol level lumps the ‘good’ HDL and ‘bad’ LDL together. This total blood cholesterol is considered a general indicator of risk of cardiovascular disease but can be inaccurate. According to it, a ratio of 3.5 or lower indicates low risk of CVD. Cholesterol in this way is measured as milligrams of cholesterol per deciliter of blood volume (mg/dl). Recently, the medical profession introduced a new measurement for blood cholesterol, in millimoles of cholesterol per liter of blood (mmol/L). This new measurement is more complex and more difficult for non-tecnical people to understand than the old measurement. A number of 200 mg/dl becomes 5.15 mmol/L in the new system, for example. To roughly convert the old measure to the new, divide the old number by 39.

The way doctors have explained HDL and LDL is that high ‘good’ HDL in our blood indicates that the system for removing excess cholesterol is functioning well and preventing the accumulation of cholesterol in our arteries. A high ‘bad’ LDL level on the other hand indicates that our system is being overloaded by cholesterol from food which is being deposited in our arteries and is increasing our risk of high blood pressure, heart attacks and stroke. The author believes much profit is invested in this old dogma.

A lot of research has yielded new information about cholesterol and heart health. The new findings show a different view of cholesterol as follows:

  1. Oxidized cholesterol. Recent findings show that only oxidized LDL cholesterol damages arteries and leads to atherosclerosis. When our body’s normal antioxidants which normally prevent oxidative damage to arteries become depleted, cholesterol and fats (triglycerides) become oxidized and cause damage to arteries. Oxidation also uses up antioxidants lowering already low levels. EFA’s also lower blood fibrinogen/fibrin levels that could thicken our arteries because of lack of vitamin C.
  2. Lp(a) and its adhesive apo (a). Apo(a), a protein carried by Lp(a) is an adhesive protein used for tissue repair. Together with other repair proteins (fibrinogen/fibrin) it thickens our arteries in cases of weak arteries. Apo (a) seems to protect our arteries in cases of vitamin C deficiency by thickening them. It has been found that it is this lipoprotein Lp(a), which looks like LDL but carries the adhesive repair protein apo (a), that is a is a strong indicator of  cardiovascular disease. Measurements on which the cholesterol dogma is based have erroneously lumped LDL and Lp(a) together. Separated from Lp(a), LDL alone appears to be a very weak risk factor. This means that LDL has been wrongly blamed for damaged done by Lp(a). In addition, Lp(a) often increases when levels of vitamin C decrease in our blood stream, and usually decrease when vitamin C levels increase. Increased intake of vitamin C (several grams a day) and other anti-oxidants can keep Lp(a) and apo (a) levels down, reverse scurvy and build strong thin arteries with strong connective tissue. Vitamin C snags free radicals preventing them from doing damage, it also recharges vitamin E which snags free radicals in oil soluble membranes. Vitamin C recharges sulphur containing glutathione, which snags free radicals that made it through the membrane into the cell. Since vitamin C is water soluble it is excreted after urination, so it would be good to replenish it afterwards.

Trans fats and cholesterol

We have seen how trans fats are detrimental to health. Trans fats can increase blood cholesterol levels by up to 15% and blood fat (triglycerides) by up to 47% very rapidly when partially hydrogenated vegetable oils containing 37% trans fatty acids are ingested. High triglycerides levels play a part in developing cardiovascular disease. If our diet contains cholesterol, the effect of trans fatty acids is enhanced.

A large well controlled study published in the ‘New England Journal of Medicine’ in 1990 shows conclusively that trans fats increase total cholesterol and LDL, both of which are correlated with increased cardiovascular disease, disproving manufacturers’ advertising claims that suggest that margarines can be good for the health of our heart.

EPA and DHA and cholesterol

These two fish oils can help with cholesterol because by being highly unsaturated they have a strong urge to disperse. So strong is their tendency to move apart that they help prevent aggregation of saturated fatty acids that like to stick together, helping to keep saturated fatty acids and cholesterol dispersed. EPA and DHA keep our platelets from getting too sticky, lowering the risk of blood clots.  They also lower apo (a) and fibrin levels in our arteries. They lower triglycerides up to 65%, lower cholesterol and LDL  to some extent and very low density lipo-protein (VLDL). They also lower blood pressure and protect against cancer.

Our body can convert alpha linoleic acid (LNA) (found in flax seed, chia, hemp seed, pumpkin seed oil, soybean, walnut and dark-green leaves) into EPA when it is accompanied by co-factors like B 3, B 6, vitamin C, magnesium and zinc. Two tablespoons of flax oil can be converted into 378 mg of EPA, approximately what two large capsules of fish oil will supply.

To sum up, fatty degeneration involves much more than cholesterol, it involves an imbalance of essential fatty acids, the presence of altered (toxic) fatty materials (trans fats, oxidized fatty acids, etc), an excess of non-essential fatty acids (fats, oils, cholesterol) in places or quantities where they are not normally found. Cholesterol is not essential to obtain from the diet because our body can make it, this doesn’t mean that eating cholesterol should be a problem. As long as our diet includes all of the other essential nutrients, antioxidants, fiber, good bacteria and is low in refined carbohydrates and sugars, cholesterol levels take care of themselves through the different cholesterol controlling mechanisms we have seen in this blog.

We at Healthy Hearts Club recommend to complement a balanced diet rich in essential fats with the ‘Heart and Body Extract’, together with the ‘Liver Support Compound‘ and the ‘Kidney/Bladder Extract‘ for maximum results. Thanks for reading.

The sugar fat connection

We have been talking about fats and cholesterol and we have pointed to the detrimental effects of sugar consumption. Sugar and fats might not appear to be connected but according to nutrition expert Udo Erasmus, “refined dietary sugars and starches almost always turn into fats in the body.” In this fat and cholesterol phobia driven world we live in, we don’t seem to be as scared about the effects of sugar in our health. In what follows, we will see how sugar can be more of a cardiovascular risk than the dreaded cholesterol.

Which sugars?

When we talk about sugars, we are referring to all refined sugars and syrups. These are:

  1. Simple sugars: glucose (also known as dextrose), fructose (also known as levulose) and galactose (found in milk).
  2. Double sugars: sucrose (table sugar), maltose (in beer) and lactose (in milk).
  3. Dextrins and dextrans.
  4. Syrups made from sugarcane, sugar beets, sorghum and maple.
  5. Honey. The problem with all of these sugars is that our body digests and absorbs them rapidly and turns them into saturated fatty acids.
  6. Starches. Starches are sugar molecules bonded together. Enzymes in our body must break the bonds between the glucose molecules, gradually turning starches into glucose via digestion. Glucose is the primary fuel for the cells in our body (from vegetables rather than from simple sugars). Starches are preferable to sugars because they are digested and absorbed more slowly. Refined starchy foods (white flour, rice, paste, enriched flours, corn starch, tapioca, breakfast cereals, etc) are more likely to turn into fats than starches from whole grains, which contain more fiber and are digested even more slowly.

Sugar in your kitchen

Products that contain a lot of sugar are ketchup, canned fruits, juices, ice creams, jams, jellies, soft drinks, pies, candies, etc. Many meat and sausage products are extended with refined starch and protein. Starch mixtures are more difficult to digest than either protein or starch by itself. When poorly or incompletely digested, such mixtures can lead to bloating, intestinal pain and gas. Potatoes and yams contain starch that is quickly broken down and can increase blood sugar levels rapidly.

Carbohydrates and health problems

Complex carbohydrates (vegetables) are the best source of slowly released glucose, which is the best fuel for providing the energy we need. Complex carbs contain fiber and other things that are digested slowly. The glucose released is burned/used up by body functions at the same rate that it is produced therefore they don’t provide extra energy that turns into fat. Complex carbs also contain vitamins and minerals (cofactors) that enable our body to burn them cleanly into carbon dioxide, water and energy. On the other hand, diets high in refined carbs will lead to cardio vascular disease (CVD) or diabetes as early as 30 years of age. Refined sugars need no digestion and are absorbed rapidly, they lack the cofactors and our body cannot burn them properly. When this happens glucose then floods our blood and cells. This is a dangerous situation that can lead to diabetic sugar shock, coma and death.

Excess glucose

Our body deals with excess glucose in two ways:

  1. Stores it as fat.
  2. It excretes excess glucose through urine (common in diabetes). This only happens when the first fails as is the case of overload or failure of sugar regulating mechanisms.

Our body is not equipped to deal with continued excess, so this is something we need to avoid. When we eat excess glucose what happens is the pancreas releases  insulin, which in turn moves glucose into our cells. In our cells glucose is fed into the energy producing cycle (krebs cycle) of the mitochondria in our cells. This stimulates the production of fatty acids, which get turned into a triglyceride, which then is stored in our cells and organs. This is why high sugar consumption leads to high triglycerides in the blood and to cardiovascular disease: stroke, heart attack, clogged arteries and diabetes. What is more significant is that these fats are ‘sticky’ saturated fatty acids. Our body makes enzymes that change saturated fatty acids (SaFas) into a liquid oil, so the sticky and prone to form flow impending clots in blood vessels are changed into a liquid oil that doesn’t have such dangerous effects in our body. This ability is limited though, so over consumption of these sticky SaFas combined with lack of essential minerals and vitamins can lead to blood vessel degeneration, clots, heart attacks and stroke, pulmonary embolism, circulatory problems of the extremities and blindness in diabetics.

In addition, fatty acids made from sugars interfere with the essential fatty acids functions and increase the likelihood of diseases of fatty geneneration. An excess of refined sugars can also increase cholesterol levels. Most of our organs can use fat for energy, but not our brain, which requires glucose (from complex carbohydrates), glutamic acid or ketones from protein.

Refined sugars are absorbed very quickly into the blood stream. Insulin then has to remove this excess glucose, which causes the levels of glucose to fall too low (hypoglycemia). When this happens, the adrenal glands kick in to mobilize the body’s stores of glycogen to make more glucose. This kind of diet overworks our pancreas and adrenal glands. If the pancreas slows down it will produce less insulin so excess glucose remains in the blood resulting in cardiovascular disease and diabetes. Also, if the adrenals are too burdened, the result is an inability of our body to deal with stress. Stress caused diseases is the end result. Overworked adrenals also cause the body to be unable to raise glucose levels necessary for energy requirements of the body. This will result in low blood sugar which will cause sugar cravings. When we consume sugar in this manner, we go from high sugar to low sugar, all of which is very taxing to the body and adds a load of stress to our heart.

When the body is unable to use the extra fats and cholesterol that come from a high sugar diet, it will deposit it in the cells of our liver, heart, arteries, fat tissues, kidneys, muscles and other organs. This means atherosclerosis, fatty liver, kidney disease, tumors, obesity, etc.

If all this was not bad enough, we can add that sugar shuts down the immune system. It also increases the body’s production of adrenaline by four, which activates the fight or flight response and increases the cortisol levels in the body, which also shuts down the immune system. Sugar lacks the vitamins and minerals required for its own metabolism so the body uses its own stores of these precious nutrients. Sugar feeds candida, fungi, and cancer cells. Sugar interferes with the transport of vitamin C because they both share the same transport system. High blood sugar inhibits the release of linoleic acid from storage in fat tissues and contributes to essential fatty acid deficiency.

Sugar and triglycerides

Our body can convert a toxic excess of sugar into less harmful triglycerides (TGs). In this way, TGs provide a safety mechanism for our body. The more sugar we consume obviously, the higher the triglycerides levels will be in our blood. TGs are then carried around in our blood stream which is known as high blood triglycerides.

Triglycerides and disease

Excess TGs can cause problems. High blood TGs levels increase our risk of heart disease. They are produced by high intake of cholesterol, overeating and by high intake of refined sugars, sticky saturated fats and too few antioxidants. Under these conditions, TG fatty acids oxidize and damage the insides of our arteries. High blood TG levels may also increase the tendency of blood cells to clump together (blood clots).

Excess stored triglyceride fats correlate with high blood cholesterol and triglyceride levels. All increase our risk of cardiovascular disease, high blood pressure, heart and kidney failure and other degenerative diseases. Diets high in fats but also rich in minerals and vitamins lessen the danger of degeneration. The antioxidant vitamins C and E, carotene, sulphur, selenium, zinc and manganese are important for preventing fatty acids from oxidizing too. Vitamin B 6 should be increased on a high fat diet as it is necessary for metabolizing the fatty acids.

A diet high in omega 3 fatty acids from flax, or EPA and DHA from fish and marine animal oils can lower triglycerides levels by up to 65%. Exercise also lowers blood TGs levels by burning up excess fats to produce energy. Normal blood TG levels are about 100 milligrams per deciliter (mg/dl).

Functions of triglycerides

Despite this dark side of triglycerides, in the right amount, they are important for health.

Chemists call fats and oils triglycerides because they consist of three (tri) fatty acids molecules joined to a glycerol (glyceride) molecule.

Triglycerides are the main kind of fat we carry in our body. All oils and fats are mixtures of triglycerides and make up 95% of the fats we eat.

TGs are the main form in which living organisms store energy for future use. Edible oils from seeds, egg yolk and fat deposits of animals are also mainly TGs. TGs serve as our body’s reserve of the vital essential fatty acids, linoleic acid (LA) and alpha linoleic acid (LNA).

TGs are excellent insulation material, forming a layer around our body under our skin that conserves heat. Without this layer, more food consumption, more digestion, more absorption and increased metabolism would be required to keep body temperature constant.

Body fat is an effective shock absorber. It protects internal organs from shock and injury every time we take a step, walk or run.

Fat tissues store energy reserves on which our body can draw between meals, increased physical exertion, while we sleep, during pregnancy or during a famine.

TGs are fuel for all organs, except the brain. TGs store our body’s reserves of EFA’s.

To sum up, excess sugar consumption can have detrimental effects in our health. A balanced diet high in essential fatty acids is the best way to wean ourselves from sugar. Thank you for reading.


Understanding fats. Does your heart need an ‘oil change’?

When it comes to health there is no topic that has been received more press than fats and cholesterol. We all have heard of fats that kill, but are you aware that fats can heal? The truth of the matter is that fats are absolutely necessary for life. What determines whether a fat is a killer or a healer? In this blog and in subsequent blogs we will go into detail into this topic. We will hopefully answer all your questions about fats like, which is better, margarine or butter? What exactly are trans-fats? What are essential fatty acids? How much do I need?

To delve deep into all of this we will focus on Udo Erasmus‘ book “Fats that heal, fats that kill”. Udo Erasmus is an internationally recognized authority on the topic of fats and cholesterol. He has a degree in genetics, biochemistry and a PhD in Nutrition and is passionate about his job. He pioneered technology for pressing and packaging healthy oils and travels the world educating people and health professionals about the importance of good fats. According to him, “fats continue to be cause of much debate, controversy and confusion, coming mainly from half-truths that have been used for advertising purposes…Doctors are rarely trained on nutrition and the processing of oils to know how this affects our health and we often entrust our health to them, not knowing we can gain the knowledge to take care of our own bodies. Lots of new research information have yielded a great deal of evidence on the role of nutrients on healing and health, despite this the medical body remains skeptical.”

From fatty generation to fatty degeneration.

Fat related diseases ultimately kill 2/3 of the population living in industrialized nations. This comprises cardiovascular disease, cancer and diabetes. Since the 1900s when cardiovascular disease and cancer were rare much has changed: processed foods becoming a mega-industry, use of pesticides, rise of pharmaceutical drugs, pollution of soil, water and air, chlorination of water, etc. Of importance has been the kind of fats we consume and how we process them. When it comes to fat, there is what he calls the ‘goldilocks effect’, there is either too little (deficiency), just right (optimum) or too much (excess), all determined by age, sex, physical , mental and environmental conditions, etc. . Too little will bring about physical degeneration, too much can bring about toxicity. Both of which can cause disease. Malnutrition results mainly from deficiencies but also from imbalances, poor digestion or absorption.

Other factors determine how fats affect our health, like what kind of fat is it, how the fat has been treated: is it fresh or old?, has it been exposed to light, oxygen, heat , hydrogen, water, acid, base or metals like copper and iron? what is the ratio of different oils. Only the right kinds of fats, prepared with the right methods, in the right amount and with the right ratio build our health, otherwise they become ‘killer fats’. Large US government sponsored surveys show that over 60% of the population is deficient in one or more essential nutrients. Deficiencies, excesses or imbalances in fats lead to degeneration and are involved in 70% or more of all US deaths.

Another aspect that determines how an oil affects our health are co-factors. Fats don’t act alone, they require certain vitamins and minerals to do their job. Research has found there are 50 essential factors for health: essential nutrients (20-1 minerals, 13 vitamins, 8 amino acids and 2 essential fatty acids), a source of energy (starch or glucose), water, oxygen and light. These are essential because our body doesnt make them so we must obtain it from our environment. In addition, also required for good health are fiber, friendly bacteria, hydrochloric acid, bile and digestive enzymes. Herbs will also help to bring the body to peak performance.

Let’s face fats.

The word ‘lipids’ is a general word that is used to refer to fats, oils, cholesterol and other fat-like substances, fatty acids (the main building block of fats and oils), phospholipids from which our cells’ membrane is made and alkylglycerols. Fats are solid while oils are liquid.

Fatty acids deserve especial attention because they are essential for the health of our cells. There are different families of fatty acids. The main two are saturated fatty acids and unsaturated fatty acids. Saturated and unsaturated fatty acids differ in melting point and stability. Saturated fatty acids are relatively stable and inert. Unsaturated are less stable and more active chemically. Plants and animal cells can modify saturated fatty acids and produce unsaturated fatty acids that are known as omega 3 fatty acids and omega 6 which are both essential because they cannot be made in the body.

All fatty acids produce 9 calories of energy per gram, the body prefers to save the important omega 3 and omega 6 essential fatty acids for vital hormone-like functions. In particular, our body uses saturated fatty acids to generate energy, build membranes or make unsaturated fatty acids and can also store them in fat tissues for future use. Our body uses unsaturated fatty acids to construct membranes, create electrical potentials and move electrical currents. It can also burn them to produce energy if the more vital roles these fatty acids play have been properly fulfilled.

Also, our body can turn unsaturated and essential fatty acids into highly unsaturated molecules, which serve functions in all cells especially in the most active tissues in the body: brain, sense organs, adrenal glands and testes. Highly unsaturated fatty acids have important jobs such as attracting oxygen, helping generate electrical currents and helping transform light energy into electrical energy and then into nerve impulses.

Food sources of fatty acids.

Unsaturated fatty acids.

In our fat phobia driven world, we forget fats can heal. Not only they heal, they are essential which means our body cannot make them so we have to obtain them from the diet. When these two essential fatty acids are missing our cells deteriorate and disease starts.

The unsaturated fatty acids are a big family of fats that include the essential fatty acids that are necessary for life. These are the omega 3 essential fatty acids and the omega 6 fatty acids (EFAs). Both omega 3 and 6s are polyunsaturated, but the author prefers to call the omega 3 fatty acids superunsaturated to distinguish them from the omega 6 fatty acids. This is important because omega 3 and omega 6 have opposite effects in the body, affecting our health greatly. (Market use of the term polyunsaturated refers to omega 6s found in safflower, sunflower, corn and sesame) Our body uses these two for important functions in brain cells, nerve endings, sense organs, adrenal glands, sex glands and all cells also to make prostaglandins, which have hormone-like regulating and communicating functions in our cells.

Unsaturated fatty acids aggregate poorly (less sticky) and melt at lower temperature than saturated fats. They have a negative charge. This is important because like charges repel one another so they tend to spread out over surfaces, which means they are less sticky and more fluid. In a cell membrane this fluidity allows molecules within cells the freedom to swim and dive and to better transport substances.

Omega 3 and omega 6 have a man-made toxic form that are obtained through processing and interfere with the body’s biological functions.

The unsaturated fatty acids are a big family of fats with sub-groups as follows:

  1. Super-unsaturated fatty acids omega 3 (SUFAs):
  2. 1a. A member of this family is alpha-linoleic acid (LNA), improperly called linoleic acid, but can also be called ALA or ALENA. It is found in flax seed (50%), chia and kukui (30%), hemp seed (20%), pumpkin seed oil (15%) maximum, canola up to 10%, soybean 5-7%, walnut and dark-green leaves between 3% and 11%. Symptoms of alpha linoleic acids deficiency are: growth retardation, weakness, impairment of vision and learning ability, motor incoordination, tingling sensations in arms and legs, high triglycerides, high blood pressure, sticky platelets, tissue inflammation, edema, dry skin, mental deterioration, low metabolic rate and some kinds of immune dysfunction.
  3. 1.b. Stearidonic acid (SDA), which is found in black currant seeds.
  4. 1.c. EPA (eicosapentaenoic ) and DHA (docosahexaenoic) in cold water fish, salmon, trout, mackerel, sardines, etc. These are really important for health, in the body these oils are found in great quantities in the brain, eyeballs, adrenal glands and testes.
  5. Poly-unsaturated fatty acids omega 6 (PUFAs).

2.a. Linoleic acid (LA) found in safflower, sunflower, hemp, soybean, walnut, pumpkin, sesame, flax, corn and sesame. Linoleic acid deficiency symptoms are: eczema, loss of hair, liver degeneration, kidney degeneration, excessive loss of water and thirst, drying up of glands, failure of wounds to heal, sterility in males, miscarriage in women, growth retardation and heart and circulatory. Deficiency is fatal.

2.b. Gamma-linoleic acid (GLA) is absent from mother’s milk contrary to advertising claims. Borage is the richest source followed by black currant seed oil. Evening primrose oil contains 9%

2.c. DGLA (Dihomogamma-linoleic acid) found in mother’s milk, very important for health.

2.d. Arachidonic acid (AA) found in meats and other animal products, from which our body makes some substances important for survival and disease functions.

  1. Mono-unsaturated fatty acid omega 9 (MUFAs).

3.a. Oleic acid (OA.) The most important monounsaturated fat is called oleic acid, found in olives, almonds, peanuts, pistachios, pecans, canola, avocado, hazelnut, cashew and macadamia oils. Oleic acid melts at 55F and is fairly stable which means it is not easily oxidized and it helps keep our arteries supple. This kind of fat is the one found in our skin glands. Land animal fats and butter are also a source of oleic acid. Oleic Acid and other members of this family are produced in our body.

  1. Mono-unsaturated omega 7:

4.a. Palmitoleic acid (POA) is found in milk and tropical oils, especially coconut and palm kernel. An excess can interfere with the body’s conversion of essential fatty acids into hormone like prostaglandins. Our body converts palmitoleic acid into several other members of the omega 7 family.

Chemical nature of essential fatty acids. Why are EFAs so important?

Fats are not all the same. Different types of fatty acids take part in different kinds of reactions. EFAs take part in so many biological functions that it would be hard to list them all. What follows is a list of the most important roles EFAs have in the body.

  1. EFAs are used to make phospholipids, the main structural compounds of cell membranes. This is especially important for the most active of body tissues: brain, nerve cells, synapses, retinas, adrenals and testes.
  2. Most importantly, EFAs interact with proteins in the transfer of electrons and energy. Life is movement of energy.
  3. EFAs attract oxygen into our body.
  4. EFAs transfer and carry oxygen from our red blood cells to precise locations in our mitochondria which use it to produce energy.
  5. EFAs absorb sunlight energy which increases their ability to react with oxygen by a thousand fold, this makes them very active.
  6. Because EFAs carry negative electrical charges they repel one another, when we eat these fats they get incorporated into our cells’ membranes and this keeps them from clumping together (clotting).
  7. EFAs keep our membranes fluid, this allows substances such as toxins to move to the surface of the skin, intestinal tract, kidneys or lungs where these can be discarded.
  8. The chemical reactions on which life depends require a one-way movement of electrons and energy in molecules. This is made possible by EFAs.
  9. EFAs can create charges of static electricity that are caught between the water within (positive charge) and the membrane outside the cells (negative charge) creating electrical currents very important for nerve, muscle, heart and membrane functions.
  10. EFAs also hold oxygen in our cell membranes where oxygen acts as a barrier to viruses, fungi, bacteria, etc. which cannot survive in the presence of oxygen.
  11. Hemoglobin production. EFAs produce red blood pigment (hemoglobin) and make oxygen available to our tissues.
  12. Membrane components. EFAs are part of all cell membranes. They help hold proteins in the membrane thus they are involved in the traffic of substances in and out of our cells. They also help create electrical potentials across membranes which when stimulated, generate bioelectric currents that travel along cell membranes to other cells, transmitting messages.
  13. EFAs are also structural parts of the membranes of subcellular organelles or small organs within our cells among which is the mitochondria, which is like a little factory inside our cell that burns food molecules to release the sunlight stored in them for use as energy. Another one is the nucleus which contains the chromosomes that carry the master plan according to which our whole body is constructed. This is why these oils are found especially concentrated in membranes of the brain, nerve cells and synapses, retina, inner ear, adrenal glands and sex glands.
  14. Recovery from fatigue. EFAs shorten the time required for fatigued muscles to recover after exercise by facilitating the conversion of lactic acid to water and carbon dioxide.
  15. EFAs are precursors of prostaglandins, three families of short-lived hormone like substances that regulate many functions of the cells in all tissues. Some prostaglandins affect the tone of involuntary muscles in our blood vessels, some lower blood pressure, some relax coronary arteries and some inhibit platelet stickiness. EFAs are also precursors of some unsaturated fatty acids needed by the most active oxygen requiring energy and electron exchanging tissues: brain, retina, adrenal, and testicular tissues and ensure oxygen is available.
  16. Growth. They increase the rate of the metabolic reactions in our body, this increased rate burns more fat into carbon dioxide, water and energy (heat) resulting in fat burn off and loss of excess weight.
  17. They are also involved in electron and energy transport.
  18. LNA can lower elevated blood fats by up to 65%.
  19. They help to keep the blood fats fluid, so they help generate the electrical currents that help our heart beat in an orderly sequence.
  20. Cell division. EFAs are part of the new cell membranes after they divide.
  21. They help our immune system fight infections.
  22. EFAs govern every single life process in our body. Life without them is impossible.
  23. Brain development. In fetuses and growing babies, EFAs are essential for brain development. Pregnant women should be supplementing with EFAs.
  24. Other benefits: EFAs produce smooth wrinkle free skin, speed healing, increase stamina, help with premenstrual syndrome, reduce inflammation, water retention, platelet stickiness and blood pressure.

Co-factors to EFA functions

We need to remember that fats do not work alone. All their functions are only possible when EFAs are part of a complete nutritional supplement program that includes all 50 essential factors: 2 essential fatty acids, 8 essential amino acids, 13 vitamins, 20 minerals, water, oxygen and light. Apart from this we need fiber, friendly bacteria, hydrochloric acid, digestive enzymes and bile. Herbs will also help tone the human body to peak condition. Despite living in industrialized nations most of us are deficient in most essential nutrients, many of these are missing from the foods we eat because of soil depletion. Other factors contributing to this are poor digestion, poor absorption, food allergies, imbalances of bowel flora, drug interferences with metabolic processes, etc. What is more, processed foods have lost most of their nutrition when they are processed. Success also requires removal of junk foods and toxic substances. EFAs should account for 1/3 of the total amount of fats we consume. To perform their functions, linoleic acid (LA) and alpha linoleic acid (LNA) must first be converted to EFA derivatives or into prostaglandins. These conversions require vitamins B3, B6, C, magnesium and zinc. A deficiency in any of these will mimic the effects of EFAs deficiencies.

Daily requirements of EFAs.

Linoleic acid is the essential fatty acid with the highest requirement. The exact amount is still being debated and it changes according to physical activity, stress, etc. A good dose could be around 1 tablespoon a day. Obese people might need even more. Safflower is the richest source of LA while hemp seed contains both omega 6 and omega 3 in an ideal ratio of 3 to 1.

Alpha-Linoleic Acid dose is around 1-2 teaspoons a day, together with the vitamins and minerals mentioned above. The richest source of alpha linoleic acid is flax oil.


While omega 3 consumption has decreased since 1850s, omega 6 has doubled drastically changing the ratio in our food supply. This has had a bearing in our health.

Long term exclusive use of flax oil can result in omega 6 deficiency because flax seed contains four times more omega 3 than 6. Deficiency symptoms can show up within 16 to 24 months.

Caring for EFAs

Both LA and LNA are very susceptible to light, air and heat. In their natural state, the seeds isolate these elements so the oil inside the seeds can stay fresh for years. When oils are extracted, packaged and stored, especial care needs to be taken not to destroy these oils. This makes them expensive.

Light can produce free radicals and oxygen turns the oil rancid. They can then turn into toxic compounds and their properties altered. Heat like in frying or hydrogenation (to make margarines or shortenings) will change the molecular structure of the oils. This is why capsules are usually kept in dark bottles and with a shelf-date, they can be frozen to keep them fresh.

Fat metabolism and absorption

When it comes to health, digestion and absorption of fats is of extreme importance. If the body is not able to metabolize and absorb the nutrients in fats, the end result will be disease, even if we are eating the right fats. Fat metabolism cannot take place without the help of enzymes, minerals and vitamins.

Enzymes. Enzymes are facilitators between molecules that allow life to carry on. Each step in every chemical reaction in metabolism requires the presence of a specific enzyme without which that chemical reaction cannot take place.

Minerals. Enzymes work with minerals. An example is zinc, with which 80 enzymes ally themselves. Without zinc these enzymes cannot do their work.

Vitamins. 13 vitamin cofactors are essential to human health, without these many enzyme catalyzed interactions between molecules cannot take place.

EFAs and weight loss.

An excess of EFA (upwards of 3 tablespoons a day) increases the speed at which our body burns fat and glucose so this can be used to burn off excess fats and help the person stay slim. Since fats are digested slower, they suppress appetite longer than carbs. Fats also produce ketones, which reduce hunger even more.

Relationship of oil with protein

Proteins and oils are the two most abundant substances in our cells, they are found together in cell membranes, lipoproteins that carry fat and cholesterol in our blood and in membranes at the subcellular level. They form the main structures and functional components of our entire body.

We can get too much oil or too much protein if either is taken by itself over the long term. Oil and protein belong together, work together and protect each other, so both should be eaten together. This is the basis of the Budwig’s program for treating terminal cancer.

Fats and stress

Just like a battery has a positive and a negative that allow a flow of current, fats and protein become a battery in our body. Oils are negatively charged, and proteins are positively charged. Between these two poles life currents flow when the circuit of essential nutrients is complete. The more we are stressed, the more these fats and proteins are used up and the sooner this battery is run down. Oils and proteins must be continually replaced with foods that recharge our batteries. More stress requires more oils and proteins and vitamins and minerals. A deficiency becomes weakness first, then it becomes sickness, the severity of which depends on the severity of the deficiency.

Vitamins and minerals are supporting the work that fats and protein do, all of them are important and deficiencies in one can create internal nutritional stress. The fast pace at which we live our lives runs down our battery.


Antioxidants are also essential to preserve the oil from oxidizing and turning rancid. Vitamin E is essential to keep EFAs intact in our body to protect them from destruction from free radical and oxygen. Vitamin C recharges vitamin E so that it can be reused.

In nature vitamin E and other antioxidants is always present in fresh oil bearing seeds and nuts. The more EFAs an oils contains, the richer it is in anti-oxidants. Fresh nuts and seeds are a good source of anti-oxidants. When oils are pressed, vitamin E and other anti-oxidants stay in the oil if they are mechanically pressed under protection from light and air. These anti-oxidants protect our cells and tissues from free radical damage, prevent abnormal clotting of blood, protect from heart attacks, strokes and cancer by inactivating free radicals that might get out of control and start free radical chain reactions.

After processing oils, they are refined, bleached, deodorized and the anti-oxidants are removed from them. Manufacturers don’t throw away the vitamin E, they separate the sludge, concentrate the vitamin E and sell it. Without the antioxidants, the oils are unprotected. If our diet consists mainly of refined foods then uncontrolled free radical chain reactions will occur in our body, causing degeneration and aging. Transparent bottles and frying oils are all destructive. Consuming these unprotected and refined oils produce dark spots on the skin which are a sign of fatty degeneration, they are also found in the cells of heart muscle and brain of older people. They indicate a deficiency in anti-oxidants, vitamin E and selenium. Consuming unrefined oils is then the best way to obtain these important antioxidants.

Saturated fatty acids.

Hard fats and saturated fatty acids (SaFAs). Saturated fatty acids are found in all food fats and oils, especially in hard fats. An excess of saturated fatty acids can cause health problems for our heart and arteries. The harder they are the higher the melting point is and the more they will tend to aggregate and be ‘stickier’. Saturated fatty acids decrease oxygen supply to tissues (hypoxia) chocking them by making the red blood cells stick together, less mobile (sludgy) and less able to deliver oxygen to cells.

To this family belong the following:

  1. Stearic acid (SA) found in beef, mutton, pork, butter, cocoa butter, and shea nut butter.
  2. Palmitic acid (PA) found in tropical oils coconut, palm and palm kernel.
  3. Butyric acid (BA) found in butter.
  4. Arachidic acid found in peanuts.

We can divide saturated fatty acids into:

  1. Short-chain saturated fatty acids.

Short chain saturated fatty acids make up less than 10% of the total fatty acids found in butter and milk fat, some short chain saturated fatty acids are also found in coconut and palm kernel oils. Butyric acid (butter) helps feed the friendly bacteria that keep our colon clean.

  1. Medium-chain saturated fatty acids. The body uses these to produce energy. They are not stored as fat.
  2. Long-chain saturated fatty acids. They are solid at body temperature and insoluble in water. They stick together to form drops, this tendency to aggregate involves these saturated fatty acids in sticky platelets that can form blood clots in an artery. This is the case of beef, mutton, pork and dairy products. They can be deposited within cells, organs and arteries along with proteins, minerals and cholesterol. Diets high in refined sugars can create this same health problem, mainly because our body converts excess sugar into saturated fatty acids.

We can end our discussion by stressing the importance of fats for life and health. Everything that lives has fats and oils because everything that lives is made up of cells with a fatty membrane. The sub-units inside cells are also surrounded by membranes containing phospholipids and fatty acids. Red blood cells, nerve cells, liver cells, etc. all depend on fats for health. Plants also contains fats, seaweeds are the highest source. Oils in the green parts of plants are EFAs-rich, they take part in processes by which plants capture sunlight energy and store it, this is the energy we need to live.

To find out more about the author, you can visit his website

Separating ‘fat’ from fiction. The good, the bad and the ugly.

From the time of the cottage press to the mass production of oils much has changed in the food industry. Some oil processing can offer fresh oils, others will change the chemical structure of the oil and turn them into an oil that kills. What is important to note is that the good oils rich in essential fatty acids (EFAs) are unstable and last fresh a few days. With the start of mass production, many healthy and unstable omega 3 oils were replaced for more stable, less healthy omega 6, upsetting the ratio of the omega 3 and 6 that is important to health. Their cofactors, that help these oils be absorbed better, were removed with chemical extraction and chemical solvents (hexane, heptane) were added. Natural nutrients in oils were converted to dangerous substances: trans-fatty acids, polymers, aldehydes, etc. The processes used to refine oils produce dozens of different new substances by random processes that cannot be controlled. It was because of this that in 1987 Udo Erasmus started a natural oil business with new guidelines for machinery design, packaging materials, shelf dating refrigeration and guidelines for making oils with human health in mind. His methods for pressing oils produce oils that are protected from light and air with custom made modifications for existing presses. ‘Fresh edible oils require a great deal of care that the mega oil industry is not willing to do… most manufacturers know nothing about the biology human health oil’ he asserts.

In this blog, we will look at how oils are mass produced, the different methods of extraction and how the end product damages our health. We will also learn to read a label. Lastly, we will look with detail at the best and worst oils for our health.

From seed to oil

It all starts with a seed. In mass oil production, seeds are first mechanically cleaned, then cooked for up to 2 hours at around 248F to make the oil easier to extract. This exposes the oil to air, starting the process of deterioration. The cooked seeds then are pressed mechanically in an expeller press. The higher the pressure the higher the oil yield but this increases the temperature too. Oil pressed this way may be filtered, then bottled and sold in natural food stores as natural unrefined ‘crude’ oil.

Solvent extraction

Another method for extracting oils is dissolving them in a solvent like hexane or heptane (gasoline) at 131 to 149 F under constant agitation. The solvent is then evaporated at a temperature of 302F and reused. These solvents are highly flammable and traces can be found in the oil. This final product can be sold as ‘unrefined’, but it can also be processed by several further steps: degumming, refining, bleaching and deodorizing to produce refined oils. All these steps use dangerous chemicals and remove the nutrients from the oils. To put them on shelves in supermarkets, these oils can have synthetic antioxidants added like BHT, BHA, TBHQ, etc. instead of using the natural antioxidant present before all the processing.


Hydrogenation is a process introduced on a large scale in the 1930’s for making margarines and shortenings (cheaper substitutes for butter and lard, respectively). It introduces many altered fat substances in our diet. The big industry’s reason for this process is to provide cheap spreadable (plastic) products. Fully refined oils can be artificially saturated to harden them into spreadable products. Labels do not include all this information, but say something like ‘free of cholesterol’, ‘low in saturates’, ‘for frying, baking and cooking’ or ‘high in polyunsaturates’.

In hydrogenation, oils are reacted under pressure with hydrogen gas at high temperatures (248F-410F). This is done in the presence of a metal catalyst for 6-8 hours, usually nickel and aluminum, both of which can be found leaching.

In complete hydrogenation all the good essential fatty acids have been removed. They call this fat ‘safe’ because it contains no trans-fatty acids to interfere with EFA activities in your body and does not spoil, resulting in a long shelf ‘life’. Hydrogenated oil can be fried, baked, roasted or boiled without further damage. All this is highly toxic but it is a manufacturer’s dream: an un-spoilable substance that lasts forever. You can find this kind of oils on products like chocolate (hard but soft enough to melt in your mouth). They are also mixed with natural EFA containing liquid oils to make a ‘vegetable spread ‘which is like margarine but free of trans-fatty acids.

Partial hydrogenation

When the process of hydrogenation is not brought to completion a product with many intermediate substances results. Scientists have barely scratched the surface of studying changes induced in fats and oils by partial hydrogenation. Hydrogenation destroys omega 3 very rapidly and omega 6 more slightly. It is impossible to control the chemical outcome of the process and the quantities of each different kind of altered substance that will be produced. The reason is it allows cheap oils to be turned into semi-liquid, plastic, or solid fats that compete with butter in ‘mouth feel’, texture, spreadability, and shelf life. The low cost of raw materials allows margarine to be sold at a much lower price than butter, sales generate good profits with money left over for massive advertising campaigns.

Partial hydrogenation produces margarines, shortenings, shortening oils and partially hydrogenated vegetable oils. These products contain large quantities of trans-fatty acids and other altered fat substances some of which are known to be detrimental to health because they interfere with normal biochemical processes. Among other things, they increase cholesterol, decrease beneficial high density lipoprotein (HDL), interfere with our liver’s detoxification system and interfere with EFA function.

The oil in margarines and shortenings have all the protein, fiber, minerals, vitamins, lecithin, phytosterols, EFAs, etc. removed, so you are eating a dead food which in many occasions contain toxic substances.

Trans-fatty acids are produced by high temperatures and hydrogenation that turn refined oils into margarines, shortening, shortening oils and partially hydrogenated (stiffened) vegetable oils.

Fractionation and trans-esterification

These are two recent processing techniques that served industrial producers to make the oils easier to work with but add no nutritional value to an oil. The starting point of these materials are always fully refined, deodorized, bland oils.

Fractionation is when you separate an oil into 2 or 3 different triglycerides that have different fatty acid composition, for example coconut oils can be fractionated into a harder more saturated fraction that stays solid at room temperature.

What are the effects on our health?

The main side effect of hydrogenation in our health is the increase in food additives. Just hydrogenation brings twice as many food additives into our diet as all other food additives from all food sources combined. The author has observed that with reduction in EFAs and increase in altered fatty acids in our diets, fatty degeneration has risen to epidemic proportions in 90 years in spite of all medical advances, especially cardiovascular disease which rose 300%.

In food products about 1/3 of all edible oil produced is hydrogenated or partially hydrogenated. Hydrogenated oils end up in baked goods, confections and snacks such as potato chips where hydrogenated oils help give the product its crispness. Without hydrogenated oils potato chips would be limp and they wouldn’t be the popular snack they are today.

How does all this affect the properties of oils?

All these different methods to mass produce oils not only affect our health, they also alter the oils:

  1. Misfits: to explain this we can think of tinker toys, the pieces have to have a certain shape to fit together. That is how fats are supposed to fit onto enzymes and membranes to do their job. Trans-fatty acids cannot fit properly into enzymes and membrane structures in our body, so the oil cannot do the job it is supposed to do.
  2. Melting points. Natural non-sticky liquid oils change to sticky trans-fats. The first melt at 55F, the second at 111F so they stay solid at room and body temperatures.
  3. Dispersal. Natural oils are more dispersed, their molecules tend to repel one another. Unnatural trans-fatty acids are stickier. They make platelets stickier, increasing the likelihood of a clot in a small blood vessel causing strokes, heart attacks or circulatory occlusions in other organs such as lungs, extremities, and sense organs.
  4. Breakdown. The rate at which our enzymes break down trans-fatty acids is slower than the rate at which they break down normal fatty acids. This is important for our heart because fatty acids are fuel for our heart. Trans-fatty acid consumption may lower the heart’s ability to perform. In a case of increased activity, stress lowered heart performance can have fatal consequences.
  5. Holes in membranes. The job of healthy fats is to protect the cell membrane, which acts as a barrier for cells to stay alive and healthy. By changing the cell’s permeability, molecules that would ordinarily stay out of cells can get in, allergic reactions and immune reactions can result.
  6. Electrical short-circuits. Trans-fatty acids have their electrical nature changed. Healthy EFAs and their highly unsaturated derivatives are involved in energy and electron exchange reactions that also involve sulphur-rich proteins, oxygen and light. Trans-fatty acids are unable to participate in these vital reactions, worst, they interfere because they almost fit but not quite. Like in a car, when a spark plug has too wide of a gap, the spark is unable to jump this gap, this prevents the car from working.
  7. Energy flow. Life is energy, it flows in our body via electrons that move across molecules specifically for that purpose. Extremely precise structural and spatial arrangements of atoms and their electrons are required. When we change the molecular architecture of our body by introducing molecules with wrong shape (remember the tinker toys), size and properties they do not fit and throw the flow of life’s currents off course. Any molecule that doesn’t belong in our body will have such effect including altered fatty acids, pesticides, synthetics and drugs.
  8. Life functions. Life energy currents are responsible for all life functions, including healthy heartbeat, nerve function, cell division, coordination, sensory function, mental balance, and vitality. To explain degenerative diseases at the molecular level, we must look at altered molecules and their capacity to impair the natural flow of energy from molecule to molecule within our body. Trans-fatty acids constitute a major cause for these altered molecules. Since the disruption that trans-fatty acids create may be primarily electrical rather than molecular, by the time degeneration becomes visible those trans-fats that started the electrical process that led to degeneration have been metabolized and gone.
  1. EFA disruption. Trans-fats disrupt the vital functions of EFAs. They worsen EFA deficiency by interfering with the enzyme systems that transform fatty acids into highly unsaturated fatty acid derivatives found especially concentrated in our brain, sense organs, adrenals and testes. They also interfere with the production of prostaglandins that regulate muscle tone in the walls of our arteries, increase and decrease blood pressure, regulate platelet stickiness important to blood clotting and regulate kidney function, inflammation response and immune system competence. It is easy to see how anything that interferes with prostaglandins will interfere with health.

How our body deals with trans-fatty acids.

Just as a defective brick cannot be used to build, a defective oil cannot be used by the body. Some enzymes can recognize these defects and ‘reject’ these oils. Our brain is partially protected too as well as a baby in the womb is partially protected by the placenta. The body can selectively dispose of these defective oils breaking them down as fast as it can, but if too many are defective the body may have to use them for vital structures and functions anyway. This means that if all the fat we get in our diet is the fat found in m&m’s for example, our cells will be built with m&m fat and the end result is going to be disease, what kind of degenerative diseases?

  1. Atherosclerosis. Trans-fatty acids will increase blood cholesterol by up to 15% and blood fat by 47% very rapidly. Trans-fatty acids increase the size of atherosclerotic plaques, but high levels of natural oils like flax, hemp, cold water fish oils reverse this. This in spite of manufacturers’ advertising claims that suggest margarines are good four your heart.
  2. Cancer. Cancer rates have gone from 1 in 30 people in 1900 to 1 in 4 in 1990. This increase in cancer is parallel to the increase of fat consumption of hydrogenated, trans- fatty acid vegetable oils. Recent research shows that omega 3 fatty acids inhibit cancer.

Other side effects are: lower immune function, interference with pregnancy, lower birth weight, lower quality of breast milk, increase of blood insulin in response to glucose, decreased insulin response, altered activities of the liver enzyme that metabolizes carcinogens and toxins, altered membrane transport and fluidity.

Advertising. Exposing advertising claims

The oil industry is heavily invested in advertising. Fancy talk and pleasant imagery permeate many ads that want to sell us mediocre products. The worse the product is the more enticing and insistent the ad seems to be, this is especially the case of products directed to children, where a cartoon usually attracts the young mind’s attention.

Advertising counts on us being ignorant, confused or both to sell us products. We need to educate yourselves. In a label you will find things like:

‘From 100% corn oil‘. This claim is actually a true statement, margarine marketed this way usually comes from 100% corn, but it fails to specify that the corn oil used is refined, plus the fact that margarine is partially hydrogenated, and contains 25% trans fatty acids.

‘Polyunsaturated’ is a term that is usually associated in our minds with health or EFA containing. This is because both essential fatty acids LA and LNA are polyunsaturated, but most polyunsaturated oils are unnaturally produced so they contain no LNA.

‘High in polyunsaturates’, high doesn’t specify how high it is, it can refer to as little as 2%. A product termed like this may be devoid of omega 3, may contain unnatural polyunsaturates or may decrease cholesterol levels while increasing cancer. All these side effects are left out in the advertising. Trans-fatty acids constitute a major deception in advertising poly-unsaturated fatty acids because they are allowed to advertise them as high in polyunsaturates which is true but misleading because by being trans-polyunsaturted fatty acids they are harmful. Partially hydrogenated vegetable oils also contain trans-polyunsaturated fatty acids and superunsaturated fatty acids. Because hydrogenation is a random uncontrollable process manufacturers do not have to give information on unnatural polyunsaturated fatty acids and superunsaturated fatty acids in their products.

‘Contains lecithin’, how much is not specified either and just a tiny amount is enough to be allowed to be put on the label.

‘For cooking, frying and baking’ this recommendation encourages sales but we have seen oils in this way cannot be healthy.

‘No preservatives’, the oil may still contain pesticides, solvents, residues or trans-fatty acids.

‘No cholesterol’ this is true of all products of plant origin. This claim can be used to sell refined oils, tropical fats, margarines, shortenings, partially hydrogenated vegetable oil, etc. which although free of cholesterol may kill you by means of other toxic ingredients more rapidly than the feared cholesterol.

‘For the good of your heart’, there is no scientific evidence that backs up this claim in margarine and other hydrogenated products, on the contrary there is a lot that points in the opposite direction.

‘Low in fat’ or ‘light’. Some products advertised like this may still contain 50% of their calories in fat.

‘Cold pressed’ is a meaningless term. Neither industry nor government have agreed on a definition so this invites anybody to invent whatever suits them. The term was first introduced by a distributor of mass market oils strictly for advertising purposes. It can be used for seeds that have been heated to very high temperatures during deodoration because no external heat was applied to seeds while they were being pressed. This doesn’t take into account that the pressing itself produces heat due to pressure and rotational friction. In the USA this term is used undiscrimately and it is almost impossible to find commercially pressed oils without heat (an exception are virgin olive oils and one brand of peanut oils which is made by the old hydraulic pressing method that produces no heat). Screw (mechanical, expeller) presses generate heat by friction as seeds are compressed and rotated into a squeeze. Heat makes oils run out of seeds faster, the higher the heat, the less oil remains in the pressed seed cake, the better the profit. The lowest temperature at which it is possible to expeller press oils in small presses is around 122F, but the bigger the press the higher the temperature is. The higher the temperature, the faster the oil is destroyed by light and oxygen. Excluding light and oxygen from the pressing process can minimize this damage.

Butter vs. margarine

This topic has become a marketing battle waged in the media by dairy boards and oil processors, by keeping the controversy they also keep their products on our mind. Let’s look at these two in regards to health effects and their metabolism in our body.

Butter. It contains about 500 different fatty acids, one of them is butyric acid and other short chain fatty acids which are all easy to digest. It is low in EFAs, with 2% linoleic acid and no alpha linoleic acid. Compared to human milk fat, human milk contains between 7 and 14% linoleic acid and up to 2% alpha linoleic acid. The milk of a vegetarian mother contains up to 32% linoleic acid and 3% alpha linoleic acid. So if you were to compare butter and human milk, the last would win.

Butter contains about 9% stearic acid, 19% oleic acid and 38% palmitic acid. These three compete for enzymes that metabolize LA and LNA and in excess can interfere with the functions of EFAs.

A pound of butter contains 1 gram of cholesterol, a substance required by all our cells. Dairy farmers use antibiotics in cattle feed and injections which find their way into butter. Antibiotics encourage the growth of yeasts and fungi including candida in humans and can cause allergies, tiredness, sugar cravings (to feed candida), etc. Also, the use of antibiotics allows antibiotic resistant bacteria to thrive. If the butter comes from an organic farm, however, then this problem is gone.

Butter can be used for frying and high heat baking because it is mainly saturated and monounsaturated fatty acids which are relatively stable to light, heat and oxygen. Its low content of EFA is an advantage here. In general, butter is a neutral fat, it’s not essential, it can be useful for frying and in excess can be dangerous.

Butter has been blamed for the increase in degenerative diseases. However, the author notes that butter has been part of man’s diet since cows were domesticated several thousands of years ago. Degenerative diseases in a large scale are very recent in comparison (last 100 years). In this time span butter consumption has decreased. It is unlikely that butter or the cows it comes from are contributors to this rise in degenerative diseases. The author believes margarine has become more popular because is far cheaper than butter but has affected our health greatly.


Margarine contains a few short-chain, easily digestible fatty acids. The oils used to make margarines have plenty of EFAs but hydrogenation destroys them or changes them into altered substances. Margarine contains no cholesterol, but has all the minerals and vitamins removed. Margarine contains no antibiotics, but it contains plenty of trans-fats, so it can cause cardiovascular disease. Margarine is a source of aluminum and nickel which is a serious concern associated with senility, osteoporosis and cancer. Margarine is not suitable for frying, because the unsaturated fatty acids it still contains are further denatured by heat, light and oxygen. Margarine is often advertised in a misleading way as high in polyunsaturated which the public associates with good health because EFAs are polyunsaturated, but in margarine they are chemically altered so they are bad for health. The brand name Becel is made without trans-fats, and with refined sunflower and tropical fats.

Making oils with human health in mind.

In order from the most destructive to the less, light is most damaging, then oxygen. Heat speeds up the destruction by both light and oxygen. High temperatures cause great damage even in the absence of light and oxygen. Udo Erasmus custom-designed and custom-made parts for existing presses to prevent any contact of the oil with light and air while being pressed, avoiding certain metals too. Several companies now make oils using the methods he pioneered.

Packaging and storing oils.

According to the author, seed oils should be pressed and bottled in the dark and in an oxygen-free environment. Refrigeration slows down deterioration by half, so oils should be kept in a dark bottle and refrigerated. Each second that a full exprectrum light hits the oil thousands of photons strike it, each photon of light can begin a free radical chain reaction that lasts 30,000 cycles before it stops. Oils to be healthy need to go from the darkness of a bottle to the darkness of our stomach. Black bottles are best, then brown, then green. For complete protection they should be packed under inert gas (nitrogen, argon or inert gas mixtures) to exclude oxygen. Like this, oils can be kept for years without spoiling.

Opened bottles should be used rapidly after opening: flax 3-6 weeks, hemp 6-12 weeks. As soon as we open the bottle, gas molecules enter the bottle very fast. Each oxygen molecule inside the container can induce many cycles of free radical chain reactions without being used up. In a sealed cooled container, flax lasts 3 months, hemp 5 months or longer. Safflower, sunflower, sesame and pumpkin 9-12 months, and olive oil 2 years. Walnut and soy are less sensitive than flax because they contain less LNA but are more sensitive than oils containing only LA.

Labeling oil products.

Labels should be informative to help consumers make the right choices, but they are not. Manufacturers are not required to state on the label when an oil has been refined, bleached, deodorized, or hydrogenated so they don’t give this information. Labels should include the following information:

  1. Refined-unrefined: the label should say whether the oil is crude (unrefined) or refined. Usually the label specifies this only when it is ‘unrefined’ or ‘virgin’ or ‘extra virgin’. If this information doesn’t show up on the label, then it is refined.
  2. EFAs content: Since the EFAs LA and LNA are key to health, products should display how many grams per 100mg it contains of each. To be good it must contain at least 25 grams of LA per 100mg.
  3. Pressing date should be included. It shouldn’t be confused with processing date that makes older oils look fresh.
  4. ‘Mechanically pressed’ or ‘chemically extracted’.
  5. Hydrogenation.
  6. Organic or non-organic.

The good…

The best oils are unrefined, mechanically expeller pressed without solvents, stored in opaque containers protected from light, oxygen and heat and delivered quickly to the consumer so they don’t spoil.

When it comes to nutritional content, in order from the most nutritious to least, the best oils are:

  1. Hemp seed oil. It comes from the seeds of the marijuana plant. Hemp and sproutable seeds are illegal to grow in the USA, but the oil is legal. Hemp seeds and hemp oil contain no THC (the drug derivative). Hemp seed oil is probably the most perfectly balanced oil there is. Hemp contains 19% of LNA, 57% of the LA and 1.7% LA derived GLA. It is the only common oil that contains GLA. It is so well balanced that one could use it for a lifetime without ever suffering EFA deficiency. Hemp was widely used to make clothing, textiles, rope, etc. Even the first and second drafts of the U.S. Declaration of Independence were written on hemp paper. However, hemp received heavy negative propaganda that successfully changed the public’s perception of this once widely used plant. Nowadays the public’s perception of this plant is changing and there are even companies selling cannabis oil legally.
  1. Flax seed oil. It contains the largest amount of alpha linoleic acid (LNA), it is so rich in LNA it can lead to linoleic acid (LA) deficiency. Alpha linoleic acid helps disperse deposits of saturated fatty acids and cholesterol which like to aggregate and make platelets sticky (blood clots). Flax seed is a poor source of LA but it is the richest source of LNA. To convert LNA to EPA to prostaglandins the body needs optimum amounts of the conversion co-factors B3, B6, and C and the minerals magnesium and zinc. Something unique about flax is that it may contain a substance resembling prostaglandins. To be good for health flax oil must be fresh, not exposed to light, oxygen and heat because these destroy the alpha linoleic acid rapidly. Eating the seeds whole will keep the body from getting the nutrients they contain, you can grind them and eat them right away, and this is the best way to get the freshest less spoiled oil possible plus all the other nutrients they contain. Take them with plenty of fluid because its mucilage absorbs 5 times the seed’s weight of water. Use from 1 to 6 tablespoons per day. 1 tablespoon contains about 1 teaspoon of oil. The use of flax seeds this way can improve digestion, prevent constipation, stabilize blood glucose levels, improve cardiovascular health, inhibit tumor formation, etc. Ground flax seeds kept in plastic containers from the store are usually rancid. Fresh, unrefined flax oils contains lecithin and other phospholipids that help emulsify fats and oils for easier digestion, also carotene, and vitamin E. When the oil is refined both are removed. Flax seeds contain high quality easily digestible protein that contains all amino acids essential to human health, with which the body can make protein. Flax is low in both lysine, methionine and cysteine (essential for premature infants). The high fiber in flax minimizes the release of toxins back into our blood and lowers cholesterol by preventing it and bile acids from being reabsorbed into our body from our intestine. Cholesterol and bile acids attach themselves to fiber and are carried out of our body. It also feeds the healthy intestinal flora and yeasts that make some of our vitamins and protect us from unfriendly intestinal bugs. The mucilage in flax soothes and protects the delicate stomach and intestinal lining, prevents irritation and keeps the contents moving smoothly along. It absorbs water and swells to about 20 times its dry volume. It can be considered the laxative of choice. Flax mucilage also has the ability to buffer excess acid, this makes it ideal for people with acid or sensitive stomachs, ulcers and inflammatory conditions of any part of the intestine. Mucilage helps stabilize blood glucose so it can be useful in diabetes and hypoglycaemia. Flax also contains minerals, fat soluble vitamins E, carotene and water soluble vitamins B1, B2 and C. It is also high in lignans which are molecules with antibacterial, antiviral, anti-fungal and anti-cancer properties. It contains 100 more lignans than the next source, wheat bran, which is found in the seed meal rather than the oil. Flax can be considered a good food because it has almost all of the components of a complete diet: protein, oil with lecithin, phytosterols, minerals and vitamins, fiber and lignans.
  2. Pumpkin seed oil is difficult to obtain. It might contain 0-15% of alpha linoleic acid (LNA) and from 45% to 60% of linoleic acid (LA). Most commonly available kinds contain no LNA
  3. Unrefined walnut oil is difficult to find fresh, most is refined.
  4. Unrefined soybean oil is high-quality oil but the yield from mechanical pressing is low. Fresh unrefined soybean is an excellent source of EFAs, lecithin, phytosterols and other natural factors that inhibit some kinds of cancers. Most of the soy oil in commercial trade is refined and partly hydrogenated.
  5. Wheat germ oil contains some LNA and is a rich source of a fatty alcohol called octacosanol which protects heart function and may help nerve degeneration. It is also the richest source of vitamin E.

Inside the best oils category there are two oils that deserve special attention. These are the oils from fish and seafoods. They are associated with clean arteries and freedom from fatty degeneration because of the two recently discovered essential omega 3 fatty acids they contain: EPA (eicosapentaenoic acid) and DHA (docosahexaenoic acid). What makes these two oils special is that they are normal constituents of our cells, especially abundant in brain cells, nerve synapses, retinas, adrenal glands, and sex glands. They can be manufactured by healthy cells from omega 3 fatty acids (flax, hemp, etc.) but degenerative conditions may keep our body from making them. EPA and DHA come from cold water fish and other marine animals. Fish can make EPA and DHA from the omega 3 fatty acid LNA but mainly from brown and red algae. EPA and DHA reverse the negative effects of lack of omega 3 fatty acids. By adding it to our diet either through fish oil pills, by eating these fish fresh or by eating brown and red algae we can get the benefits of these oils. Algae are like living little factories that make omega 3 fatty acids and can be used as excellent food sources of EPA and DHA containing triglycerides. EPA and DHA being highly unsaturated have a strong urge to disperse, have an extremely low melting point so they will not harden or aggregate (stick together), consequently, they help keep saturated fatty acids and cholesterol dispersed and keep our platelets from getting too sticky and blood clots from happening.

Functions of EPA and DHA

-EPA is the starting material for making series 3 prostaglandins which have beneficial effect on blood pressure, cholesterol and triglyceride levels, kidney function, inflammatory response and immune function.

-In our retina, these highly active fatty acids are involved with the conversion of light energy entering our eyes into the chemical energy of nerve impulses.

-In our brain, they have neurological functions that involve energy conversion and electron transfer. They attract oxygen necessary for intense chemical activity of brain cells. In adrenal and sex glands, they provide increased chemical activity.

-In our arteries, EPA and DHA also seem to help lower fibrinogen and apo levels, two repair proteins that are involved in the proliferation of atherosclerotic tissue in arteries. Lowered levels of these repair proteins result in less atherosclerosis and more fully open arteries.

-When it comes to blood triglycerides, EPA and DHA can lower high triglycerides by up to 65%, cholesterol levels and low-density lipoprotein (LDL) and very-low density lipoprotein (VLDL) by half.

-EPA lowers elevated blood pressure through the effects of prostaglandins made from omega 3s.

-Hormone effects. From EPA our body makes prostaglandins and leukotrienes that help prevent strokes heart attacks and other problems that involve clot formation, such as pulmonary embolism and cardiovascular complications due to diabetes which can result in gangrenous limbs and blindness.

-Cancer. In some studies omega 3 fish oils inhibited growth and metastasis of tumors. Negative experimental results with omega 3 fish oils in cancer treatment are likely due to poor product quality (rancid oils) or low omega 3 fish oils. Trout, salmon, mackerel, sardines, tuna and eel are the richest sources of omega 3 fatty acids.

Conversion of LNA to EPA

If a person has no omega 3s in their body but takes 2 tablespoons of flax oil each day, of which 50% is LNA their body can make 378 mg of EPA which is what two large capsules of fish oil will supply. EPA made in our body is fresher than from pills. LNA from seeds are available in fresher conditions than fish oils because they are simpler to produce and are more stable and are less likely to contain toxic ingredients like PCBs. However, for people who cannot make the conversion, fish or their oils would be the best choice. Dietary saturates, monounsaturates, trans- fatty acids and cholesterol all slow down conversion, and deficiencies of vitamins B3, B6, C, magnesium or zinc also inhibit conversion.

How often?

EPA and DHA from fish take about 2-3 weeks to be completely metabolized in our body after being consumed. Their triglyceride-lowering, platelet unsticking, and artery protecting effects last the same length of time. Fish should be eaten at least every 2 weeks, with their skins on because the fats we want are found under their skin, especially behind the gills, around the fins and along the belly. It should be boiled better than fried.

Easily destroyed.

EPA and DHA are even more sensitive to destruction by light, air and heat than LNA. They need completely opaque insulation, either in a capsule or bottle. Most capsules marketed today contain ‘fishy’ tasting oil (rancid). Sardines canned in their own oil are the only processed source that could be said not to be rancid. The best way to eat it would be to eat it while it is still ‘wiggling’ and prepare it immediately. This is why the Inuit were virtually free of disease of fatty degeneration, even though their diet contained very little fiber.

From best oils we move on to good oils. Good oils lack LNA, therefore they should be used only in conjunction with LNA containing oils. They are a good source of LA, which our body needs more than LNA. These are:

  1. Unrefined safflower and sunflower seed oils: they are available in natural health food stores in transparent bottles which exposes them to the light.
  2. Sesame seed oil is easy to press without heat, it should be unrefined and untoasted. It contains natural preservatives that keep it stable for a long time.
  3. Rice bran oil is another stable omega 6 oil, rich source of natural waxes and sterols that lower cholesterol levels. None of these oils should be fried, rather used in salads or mayonnaise.
  1. Evening primrose oil (EPO) is always refined. Evening primrose oil, borage and black currant contain LA and GLA. Our body can make some GLA from LA under certain circumstances. GLA is beneficial for arthritis and premenstrual syndrome, also the body uses GLA to make prostaglandins that benefit the heart and arteries, glands, kidneys, joints and mental function. In addition to GLA black currant oil also contains LNA and its first derivative called steraridonic acid (SDA).

Mediocre omega 6 oils:

  1. Corn oil is usually solvent extracted and refined. Occasionally one can obtain mechanically pressed unrefined corn oil pressed from corn germ, but generally it is partially rancid.
  2. Grape oil is similar to corn oil with no special advantages over other oils. It is rich in omega 6 but has no omega 3.
  3. Other oils in this category can be applied on the skin, but they are better eaten than applied on the skin because on the skin they can turn rancid quick. The best for this are almond, apricot and prune. Almond is rich in vitamin E so it is a stable EFA rich oil. Neem oil is good for skin because of its antifungal, antibacterial and antiseptic and repels mosquitoes and other insects.
  4. Monounsaturated oils. Rape and mustard are monounsaturated oils that contain small amounts of both EFAs. Unrefined these oils can have a strong flavor so they are mainly used refined. Canola is sometimes partially hydrogenated, destroying LNA. Peanut oil is a stable monounsaturate oil available as a true batch-pressed unrefined oil with a pleasant aroma, but peanuts can have carcinogenic substances made by a fungus that grows in damp peanuts.
  5. Avocado oil is a monounsaturated oil that is sold unrefined. It is similar to olive, peanut and almond oils in its EFA and monounsaturated fatty acid content.
  6. Olive oil is rich in monounsaturates but low in EFAs. It is stable and requires no equipment for pressing the oil. It is the only unrefined oil sold in the general mass market. It contains phytosterols, chlorophyll, magnesium, vitamin E, and carotene. It contains about 80% monounsaturated fatty acids, 8-10% LA and about 1% LNA.

Research shows this fruit oil protects against cardiovascular disease, has been associated with low cancer incidence and general good health. The positive thing about olive oil that gives it its health benefits is that it is pressed without heat. When it is unrefined it still contains many natural factors unique to olives. Its unsaturated fatty acids are anti-mutagenic, which means they can protect the genetic material in our cells from mutations caused by toxic chemicals or destructive rays. When those protective unsaturated fatty acids are heated over 302 F not only they lose those protective effects but they become mutation causing themselves. Virgin olive oils are the only mass market oils that have not been heated above that temperature.

Olive oil is poor in EFAs so these must be obtained from other sources, because of this olive oil is deficient in cholesterol lowering effects. Olive oil is high in oleic acid (63-83%) and has some palmitoleic acid, which are monounsaturated non-essential fatty acids that are quite stable. It also contains the non-essential saturated fatty acid palmitic acid (7.5-18%). Olive oil also has some minor components that account for only 2% of the total value of the oil but are quite important like beta-carotene (pro vitamin A) and tocopherols (vitamin E). Magnesium rich chlorophyll is found in unrefined green oils like olive oil, hemp, pumpkin and avocado, this is also removed when the oil is refined. Phytosterols are also present in olive oil but removed when the oil is refined. One polyphenol in olive oil (oleoeuropein) lowers blood pressure.

Other health benefits of olive oil: Virgin olive oil helps membrane development, cell formation and cell differentiation. It has also been shown to be beneficial in lowering cholesterol when other bad oils were replaced by olive oil and proven to lower the formation of gallstones and favor bile secretion (all of which improves the digestion of fats and helps the body eliminate the toxic end products of the liver).

Oils that can be heated.

Butter, tropical fats (coconut, palm, palm kernel, cocoa and shea nut) are safest for frying because they contain only small quantities of EFAs which heat turns into poisonous breakdown products that interfere with EFA functions. Only small amounts should be eaten as they are sticky hard saturated fatty acid containing fats.

Tropical fats got a bad reputation for increasing cholesterol and triglyceride levels but tropical oils used in their country of origin decrease cholesterol levels. Raw tropical oils are rich sources of vitamin E and tocotrienols which help protect arteries from damage leading to cardiovascular disease. Tropical fats are the most stable fats known.

Whole seeds.

Seeds are nutritionally balanced and they are the best way to get fresh oils as long as they are not roasted and they are freshly ground prior to consuming them. The shell in each seed acts as a barrier for light and oxygen, so if they are ground, they need to be consumed fairly quickly to avoid rancidity. In addition to EFAs seeds also contain vitamins, minerals, proteins, fiber and many important minor seed specific ingredients. Good quality seeds are our most reliable sources of the freshest possible oils. Only if we need more than 2 tablespoons of oil, which is common in the treatment of degenerative conditions we need to rely on bottled oils.

Evening primrose oil, borage and black currant oils.

Evening Primrose Oil has 72% linoleic acid, 9% GLA and a small amount of non-essential fatty acids. Borage oil is 24% GLA, 34% LA, the rest is saturated and monounsaturated fatty acids. Black currant oil contains both EFAs and up to 18% GLA and 9% of stearic acid, unfortunately this is always refined and deodorized.

Hemp seed oil contains about 2% GLA. Flax, safflower, sunflower, sesame and other common vegetable oils contain no GLA at all.

LNA is found in flax, hemp, rape (canola) seed, soybean, walnut and DHA. LNA is the second EFA required for human health. Our body cannot make it, so it must come from the diet. GLA and LNA are almost identical, this is why they are easily confused and lumped together, but their small difference makes it where they cannot substitute one another.

Studies with evening primrose oil (EPO) compared to omega 3.

Both of these oils have been extensively tested in double blind trials. EPO has been found to possibly:

  1. Lower blood pressure, cholesterol, lower risk of stroke and heart attack. Omega 3 lowers blood pressure, platelets stickiness, and cardiovascular risk more effectively.
  2. Normalize fat metabolism in diabetes and the amount of insulin needed by diabetics (omega 3s do this also)
  3. Prevent liver damage caused by alcoholism.
  4. Cause weight loss by increasing fat burn-off (omega 3’s are more effective in this sense).
  5. Relieve premenstrual syndrome.
  6. Prevent drying and atrophy of tear and salivary glands.
  7. Improve the condition of hair, nails and skin (omega 3 does even a better job)
  8. Improve certain kinds of eczema.
  9. Slow down or stop deterioration in multiple sclerosis.
  10. Help treat diabetic neuropathy in type 2 diabetes (removal of sugar and saturated fatty acids and consumption of omega 3 also works well)
  11. Kill cancer cells in tissue culture without harming normal cells (omega 3 more effectively inhibit cancer cells in practice).

Continuing results with EPO and GLA.

EPO has the drawback that it doesn’t supply the missing omega 3 and adds to an already existing overload of omega 6. From LA our body makes gamma linoleic acid (GLA). The problem with EPO is that it addresses only half of the EFA conversion problem. If the conversion of omega 6 (LA to GLA) is blocked, the conversion of omega 3 (LNA to SDA) is also blocked because the same enzyme converts both EFA to derivatives. But EPO contains only omega 6s and therefore cannot address the equally important omega 3 block. Black currant oil contains both omega 6 and omega 3 derivatives and can therefore address the conversion of both EFAs. To address the conversion problem EPO must be combined with an oil containing omega 3 derivatives, such as fish oil. In the case of cancer it is especially critical that EPO not be given without including omega 3 fatty acids, because omega 6 enhance tumor formation and growth, while omega 3 inhibits tumors.

Borage and black currant oils.

These have been less researched. Like EPO, borage oil contains only omega 6 so it only does half the job, it should be combined with an omega 3 derivative like fish oil. Black currant oil contains both omega 3 and 6, GLA and the omega 3 derivative stearidonic acid. All of these oils are usually refined, solvent extracted as well.

As with all oils, cofactors are needed: zinc, magnesium, vitamin C, and vitamins B3 and B6, as they assist the body in converting GLA to prostaglandins.

The bad…

Toxic oils. Besides trans-fats, several oils contain toxic fatty acids and therefore are not recommended for human consumption.

  1. Cottonseed oil. Contains cyclopropene fatty acid which has toxic effects on liver and gallbladder, slows down sexual maturity, destroys enzymes that make highly unsaturated fatty acids and interferes with essential fatty acid functions. It also contains gossypol, a complex substance that irritates the digestive tract and causes water retention in the lungs, shortness of breath and paralysis. Cottonseed oil contains high levels of pesticide residues.
  2. Cetoleic acid, found in herring and capelin oils.
  3. Castor oils contains ricinoleic acid, which stimulates the secretion of fluids in the intestine, and is therefore used as a purge, causing powerful intestinal contractions. It has no harmful effects because it is not absorbed into our body. Prolonged use can make our body to lose minerals and vitamins.

Modified oils.

  1. Oils can be modified by heat. In this way, oils produce many harmful substances which have not been identified yet, but some have been found in the liver as fatty deposits. Deep frying destroys the oils in 3 different ways simultaneously: light, oxygen and heat. Besides producing atherosclerosis, they also impair cell respiration and other cell functions, inhibit immune functions and lead to cancer.
  2. Brominated oils. Oils can also be modified when bromine is added. These oils are made from olive, corn, sesame, cottonseed, and soybean oils and are used for cosmetic purposes in fresh juices, to give juices with a cloudy appearance a fresh look. Brominated oils cause changes in heart tissue, thyroid enlargement, fatty liver, kidney damage, and withered testicles. They decrease the heart’s ability to use saturated fats as fuel and lower the liver’s ability to metabolize pyruvic acid, a very common fuel for cells. These oils accumulate toxic bromine in the tissues of children and in some countries in Europe they are banned.
  3. Oils can also be modified by light and free radicals. Light produces free radicals in oils, which will produce changes in molecules that affect our health. A free radical is a molecule that is missing an electron, they are very small and can move at the speed of light (186,000 miles per second), while it is moving, it is looking for a partner and is willing to break up another pair to find a ‘mate’. Between 2 to 5% of the free radicals involved in oxidation escape from molecular confinement and it is these escapees that can damage molecules in cells and tissues. Lots of free radicals are produced every second and our body uses antioxidants like vitamins C, B3, and E etc. to neutralize them. If we are antioxidant deficient, free radical chain reactions can occur leading to the wrong biochemical reactions, toxic substances and disease. In an oil, this free radical chain reaction can happen by exposing the oil to light. A ray of light may be caught by an electron in a fatty acid breaking off its bond, the electron now carries more energy than it did before and in this excited state, it takes off with a hydrogen nucleus, leaving behind a lone electron desperate for a partner, this will go on as another electron is left unpaired which then becomes a chain reaction until the original electron finds another lone electron or until an antioxidant traps the loose electron. This can go on for 30,000 cycles before it is stopped and another ray of light can start this chain reaction again. Billions of photons are present even in a cloudy day. This becomes more dramatic if the oil is already processed from which all antioxidants have been removed.
  4. Oxygen destroys oil in a similar way. If the antioxidants are left intact in the oil, they can trap these free radicals. Vitamin C for example can reactivate used up glutathione and vitamin E, which in turn reactivates carotene and other antioxidants. Metals added to the oil encourage free radical formation. In mass production, cheap dangerous antioxidants are added to replace the natural ones. In our body, vitamin E and carotene protect the fatty cell membrane. Vitamin C, Sulphur, selenium and bioflavonoids protect the watery parts. Alpha Lipoic acid protects both. Antioxidants can prevent and reverse free radical damage, but not for ever, this is called aging. Antioxidants then play an important role in protecting oils in our body.

Oils in your kitchen. Frying and deep frying.

Frying causes rapid oxidation (rapid use up of the antioxidants). Free radicals then start chain reactions in oil molecules. Decades of this causes our cells to accumulate altered toxic products for which they have not evolved efficient detoxifying mechanisms, cells then degenerate and diseases start.

Frying is not recommended. Frying turns EFAs into toxic products, the smoke you see coming off the pan is destroyed fatty acids. Coconut oil, palm, palm kernel, cocoa butter and butter in small quantities can be used for frying if one insists on frying oils. Used in moderation, fried butter and coconut oil create fewer health problems than other fried oils. But since they lack EFAs they are nutritionally deficient, they provide only fat calories our body must burn for energy or store as fat. Shortening and margarine are definitely not good for frying because they contain too many altered molecule to begin with and frying makes them worse. Olive oil (unrefined) is acceptable for low temperature frying. Refined peanut and avocado oils withstand heat relatively well. High oleic sunflower and high oleic safflower oils are also quite stable but are more difficult to find. Fresh unrefined mechanically pressed light and oxygen protected EFA rich oils should never be used for frying. An example is flax seed.

Boiling is less destructive than frying, even the most sensitive EFA rich oils can be used on cooked grains and steamed vegetables without deterioration (temperature 212F). Baking is midway between boiling and frying (temperature 240F). Butter or coconut oil can be used to line baking pans or to brush the top of what you are baking. The inside of baked bread is steamed at an acceptable temperature for even the most sensitive of oils, the crust however has the oils destroyed. So if you must fry, use refined oils that contain the lowest amounts of EFAs and the greatest amounts of SAFAs and MUFAs and use sulfur rich garlic and onion in frying to minimize radical damage.

Oils least damaged by high temperatures in order of preference are butter, tropical fats, high oleic sunflower oil (not regular), high oleic safflower (not regular), peanut oil, sesame oil, canola oil, and olive oil. Since these oils are low on EFA they produce the lowest amount of toxic molecules when heated. Deep frying is completely prohibited if optimum health is what you are looking for, or if you are attempting to reverse cancer or any other degenerative disease.

Hidden junk fats.

They make up almost half of all the fats we eat. They are found in a great variety of processed foods. They are always refined and toxic oils and never the essential fats our body needs so the best way to avoid them is to completely stop eating processed foods.

Summing up, fats and oils are a very important part of health. Only oils that are fresh and protected from oxidation can build our body, otherwise they can damage our health. As consumers we can make informed decisions to avoid degenerative diseases and keep our health in our own hands. Thanks for reading.